The Quadratic Formula

The Quadratic Formula is used to find the roots (zeros, x-intercepts) for any quadratic relation even if it's not factorable.

If you can factor a quadratic, that's usually faster and easier than using the Quadratic Formula. You can then set $y=$ 0 and find the roots.

If you can't factor a quadratic easily, you can convert the quadratic to Standard Form $\left(y=a x^{2}+b x+c\right)$, set $y=$ 0 , and apply the Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example

Find the roots of $y=x^{2}+x-6$.
Since this is in Standard Form already, we set $y=0$ and apply the Quadratic Formula and evaluate:

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-6)}}{2(1)} \\
x=\frac{-1 \pm \sqrt{1+24}}{2} \\
x=\frac{-1 \pm \sqrt{25}}{2} \\
x=\frac{-1 \pm 5}{2}
\end{gathered}
$$

The roots are $\frac{-1+5}{2}=\frac{4}{2}=2$ and $\frac{-1-5}{2}=\frac{-6}{2}=-3$.

Example

Find the roots of $y=(x-1)^{2}-2$.
Since this is not in Standard Form, we must first convert it:

$$
\begin{gathered}
y=x^{2}-2 x+1-2 \\
y=x^{2}-2 x-1
\end{gathered}
$$

Now apply the Quadratic Formula and evaluate:

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)} \\
x=\frac{2 \pm \sqrt{4+4}}{2} \\
x=\frac{2 \pm \sqrt{8}}{2}
\end{gathered}
$$

In its simplest form, we can rewrite this as

$$
x=1 \pm \sqrt{2}
$$

The roots are $1+\sqrt{2}$ and $1-\sqrt{2}$.

Practice

Find the roots of each of the following quadratic relations.
a) $y=x^{2}+7 x+10$
b) $y=2 x^{2}-5 x-3$
c) $y=x^{2}-25$
d) $y=x^{2}+8 x+16$
e) $y=x^{2}-4 x-7$
f) $y=-4 x^{2}+6 x+4$
g) $y=-3(x-1)^{2}+3$
h) $y=7 x^{2}-1+6 x$

