MPM2D Analytic Geometry Giant Review

1. Find an equation for the line that has a slope of $\frac{3}{4}$ and passes through the point $(-2,-2)$. Graph the line.
2. Find an equation for the line that passes through the points $(2,7)$ and $(-3,9)$.
3. Find an equation for the line that is perpendicular to $y=-3 x-18$ and passes through the point ($-2,3$). Graph both lines.
4. Find the midpoint of the line segment $\overline{A B}$, where $A=(5,-3)$ and $B=(4,4)$.
5. Find the length of the line segment $\overline{A B}$, where $A=(7,3)$ and $B=(4,-1)$.
6. Find the equation of the perpendicular bisector to the line segment $\overline{A B}$, where $A=(-3,-3)$ and $B=(4,7)$. Graph the line segment $\overline{A B}$ and its perpendicular bisector.
7. Find the equation and length of the median from A of the triangle formed by the points $A(1,1)$, $B(-2,5)$, and $C(-3,-8)$.
8. Find the equation of the line that gives the shortest distance from point $P(2,4)$ to the line through $C(1,5)$ and $D(-3,-7)$. Graph the point and both lines.
9. Classify the triangle formed by each set of three points as scalene, isosceles, or equilateral.
a. $(2,0),(2,5),(-1,2)$
b. $(5,0),(5,-5),(8,-4)$
c. $(12,3),(7,4),(11,5)$
d. $(4,5),(0,4),(1,0)$
10. Show that $\triangle L M N$ is a right triangle if $L=(6,0), M=(8,8)$, and $N=(3,3)$.
11. Find the midpoints of all the sides of $\triangle L M N$ from question 10 . Show that the line connecting two midpoints is parallel to one side of the triangle.
12. $\triangle A B C$ is isosceles; $A=(-6,2), B=(1,3), C=(-2,-1)$. Show that the median from C is an altitude of the triangle (i.e. it is perpendicular to $\overline{A B}$).
13. Write the equation of the circle with centre $O(0,0)$ and radius 8 .
14. A circle has centre $O(0,0)$ and passes through the point $(12,5)$. Write the equation of the circle.
15. A circle has diameter 4 and has centre $O(0,0)$. What is its equation?
16. Show that points $P(3,4)$ and $Q(-4,3)$ are both on the circle $x^{2}+y^{2}=25$.
17. A rock is thrown into the centre of a circular swimming pool. The circular ripple formed on the surface increases in radius at a rate of $15 \mathrm{~cm} / \mathrm{s}$.
a. Write an equation for the circle formed by the ripple at time $t=4 \mathrm{~s}$. Use $O(0,0)$ as the centre of the circle.
b. How long will it take the ripple to reach the edge of the pool if the pool has a radius of $3 \mathrm{~m}=300 \mathrm{~cm}$?
c. A toy is floating at coordinates $(-40,10)$. How long will it take the ripples to reach the toy?
18. Sketch the graph of the circle $x^{2}+y^{2}=81$.
