Equation of a Circle Centred at the Origin

 How can we define a circle?Suppose we have a circle centred at the origin $O(0,0)$ with a radius of 5 . Use the formula for length to confirm that $P(0,5)$ and $Q(3,4)$ are both on the circle.

We can use the formula for length to define the equation of a circle. For any point $P(x, y)$ on the circle of radius r,

$$
\begin{aligned}
|\overline{O P}| & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
r & =
\end{aligned}
$$

Example 1: Use the following table of values to help graph the circle $x^{2}+y^{2}=9$:

x	y
0	
1	
2	
3	
4	
-1	
-3	

Example 2: Sketch a graph of the circle $x^{2}+y^{2}=36$.

Example 3: A circle has centre $(0,0)$ and passes through the point $P(8,-6)$.
a) What is the equation of the circle?
b) What are the coordinates of the point opposite to P that forms the other endpoint of the diameter?
c) Does the point $Q(9,4)$ lie inside, outside, or on the circle?

Example 4: A stone is dropped into a pond. The ripples it sends out form a circle whose radius increases by $5 \mathrm{~cm} / \mathrm{s}$. Find the equation of the circle 12 s after the stone is dropped.

What will the equation be after 100 s?

How long after the stone is dropped will the circle pass through the point $M(35,25)$?

