Example 1: Drawing 2 Face Cards

Suppose you draw 5 cards from a standard, shuffled deck of 52 cards. What is the probability that you draw exactly 2 face cards?

Solution

This is a hypergeometric distribution with the following values:
$n=52$
$a=12$
$r=5$
$k=2$

$$
\begin{aligned}
& P(X=k)=\frac{\binom{a}{k}\binom{n-a}{r-k}}{\binom{n}{r}} \\
& P(X=2)=\frac{\binom{12}{2}\binom{52-12}{5-2}}{\binom{52}{5}} \\
& P(X=2)=\frac{\binom{12}{2}\binom{40}{3}}{\binom{52}{5}} \\
& P(X=2) \cong 0.2509
\end{aligned}
$$

The probability of getting exactly two face cards is about 25%.

Example 2: Gender split for hiring

There are 85 people who interview for 4 data science positions at a prestigious company. The company ranks the applicants and decides there are 12 candidates who are all equally suited for the 4 positions. Since they are concerned about unfair biases in the selection process, the company decides to choose 4 people at random from the 12 best candidates.

7 of the 12 candidates identify as female, and 5 of the 12 candidates identify as male. What is the probability that there will be exactly 2 people hired who identify with each gender? What is the expected number hired by gender?

Solution

This is a hypergeometric distribution with the following values:
$n=12$
$a=7$
$r=4$
$k=2$
Note that we have arbitrarily selected candidates who identify as female as the "success" category; the same procedure works by selecting candidates who identify as male as the "success" category.

$$
P(X=k)=\frac{\binom{a}{k}\binom{n-a}{r-k}}{\binom{n}{r}}
$$

$$
\begin{aligned}
& P(X=2)=\frac{\binom{7}{2}\binom{12-7}{4-2}}{\binom{12}{4}} \\
& P(X=2)=\frac{\binom{7}{2}\binom{5}{2}}{\binom{12}{4}} \\
& P(X=2) \cong 0.424
\end{aligned}
$$

There is about a 42.4% probability that there will be 2 candidates hired who identify with each gender.

$$
\begin{aligned}
E(X) & =r \cdot \frac{a}{n} \\
& =4 \cdot \frac{7}{12} \\
& =\frac{7}{3} \\
& \cong 2.33
\end{aligned}
$$

The expected number of candidates hired who identify as female is about 2.33, and the expected number of candidates hired who identify as male is about $4-2.33=1.67$.

Example 3: M:tG

Suppose you have a Magic: the Gathering deck of 60 cards, of which 22 are lands and 38 are non-lands. Make a probability distribution table for lands drawn in the opening hand of 7 cards.

Solution

This is a hypergeometric distribution, with the following values (counting land cards as successes):
$n=60$
$a=22$
$r=7$
We need to calculate $P(X=k)$ for each $k \in\{0,1,2, \ldots, 7\}$.

k	$P(X=k)$
0	3.27%
1	15.73%
2	30.02%
3	29.43%
4	15.98%
5	4.79%
6	0.73%
7	0.04%

For example, the probability of drawing an opening hand with 2 or 3 land cards is $30.02 \%+29.43 \% \cong 59.46 \%$.

