Binomial Distribution

A binomial probability distribution consists of a series of independent trials, each of which results in either success or failure. The probability of success is the same for each trial.

Example

For example, suppose a company manufactures USB cables. They know from historical data that each cable has a 5% probability of being defective. Suppose also that a technician selects 10 cables at random to test. What is the probability that exactly 2 of those cables are defective?

Let's answer this in stages. First, let's find the probability that the first 8 cables are good and the last 2 are defective (that is, we'll calculate the probability of getting 2 defective cables in a specific order). This probability is

$$
\begin{aligned}
(0.95)(0.95)(0.95)(0.95)(0.95)(0.95)(0.95)(0.95)(0.05)(0.05) & =(0.95)^{8}(0.05)^{2} \\
& \doteq 0.0017
\end{aligned}
$$

So there is a 0.17% probability of getting 8 good cables followed by 2 defective cables.
However, the ordering of cables doesn't matter; we need 2 defectives in any order. So we can multiply this probability, 0.17%, by the number of orders in which 8 good and 2 defective can occur, which is $\binom{10}{8}:$

$$
\begin{aligned}
\binom{10}{8}(0.95)^{8}(0.05)^{2} & \doteq 0.075 \\
& =7.5 \%
\end{aligned}
$$

It's sometimes confusing why we've used a combination to count the number of orders. To see this, think of successes as identical items and failures as identical items. I like to think of them as letters: S for success and F for failure. Our original order can be represented by
SSSSSSSSFF

How many orders are possible?

$$
\frac{10!}{8!2!}
$$

because there are 8 identical successes and 2 identical failures. This is equivalent to $\binom{10}{8}$.
Another way to think of this is that you are "choosing" 8 positions out of 10 in which to place the 8 successes. The 2 failures will fill in the remaining 2 positions.

In general

For a random variable X representing the number of successes in a series of n independent trials, each with probability of success p, the probability of getting exactly k successes is

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

In this formula, $\binom{n}{k}$ tells us the number of orders in which the successes and failures can occur; p^{k} tells us the probability of getting k successes in a row; and $(1-p)^{n-k}$ tells us the probability of getting $n-$ k failures in a row.

To describe a probability distribution like this in a table, we only need to know n and p.

Example

Suppose you roll a d6 die 4 times, and you score a point each time you roll a 6. Complete a table that shows the distribution of 6 s .

We know the probability of rolling a 6 is $\frac{1}{6}$; this is the probability of success on each trial. There are 4 trials.

k	$P(X=k)$
0	$\binom{4}{0}\left(\frac{1}{6}\right)^{0}\left(1-\frac{1}{6}\right)^{4-0} \doteq 0.48225$
1	$\binom{4}{1}\left(\frac{1}{6}\right)^{1}\left(1-\frac{1}{6}\right)^{4-1} \doteq 0.38580$
2	$\binom{4}{2}\left(\frac{1}{6}\right)^{2}\left(1-\frac{1}{6}\right)^{4-2} \doteq 0.11574$
3	$\binom{4}{3}\left(\frac{1}{6}\right)^{3}\left(1-\frac{1}{6}\right)^{4-3} \doteq 0.01543$
4	$\binom{4}{4}\left(\frac{1}{6}\right)^{4}\left(1-\frac{1}{6}\right)^{4-4} \doteq 0.00077$
2	

In reading this table we can see, for example, that the probability of rolling exactly 2 sixes is about 11.6\%.

Expected Value

If you conduct n independent trials, each with a probability of success p, you expect

$$
E(X)=n p
$$

successes. Hopefully this is intuitive. For example, suppose you conduct 20 trials, each with a probability of success 30%. You would expect 30% of those trials to be successes, or $30 \% \times 20=6$ successes (and therefore $20-6=14$ failures).

Using our original formula for expected value for a single trial, we consider the value of a success to be $x_{1}=1$ and the value of a failure to be $x_{2}=0$.

$$
\begin{aligned}
x_{1} P\left(x_{1}\right)+x_{2} P\left(x_{2}\right) & =(1)(p)+(0)(1-p) \\
& =p
\end{aligned}
$$

Since there are n trials, we have n times this expected value, or

$$
E(X)=n p
$$

One more example

Suppose you hit 70\% of free throws you take playing basketball. If you have 6 free throws in a game, what is the probability that you hit at least 5 of them?

Solution

Hitting at least 5 free throws means hitting exactly 5 or exactly 6 . We calculate each case separately and add the results.

For this situation we assume a binomial distribution (independent trials with a fixed probability of success). We have

$$
\begin{gathered}
n=6 \\
p=0.7
\end{gathered}
$$

We calculate

$$
\begin{aligned}
P(5) & =\binom{6}{5}(0.7)^{5}(1-0.7)^{6-5} \\
& =\binom{6}{5}(0.7)^{5}(0.3)^{1} \\
& \doteq 0.3025 \\
P(6) & =\binom{6}{6}(0.7)^{6}(1-0.7)^{6-6} \\
& =\binom{6}{6}(0.7)^{6}(0.3)^{0} \\
& \doteq 0.1176
\end{aligned}
$$

Together we have

$$
\begin{aligned}
P(5)+P(6) & \doteq 0.3025+0.1176 \\
& =0.4201
\end{aligned}
$$

So you have about a 42% chance of hitting at least 5 of your 6 free throws.

