Discrete Binomial Distribution Practice Solutions

1. A new anti-viral medication is known to be 78% effective in curing a particular infection. 18 people are infected and receive the medication.
a) How many people are expected to be cured of the infection by taking the medication?

This is a binomial distribution with $n=18$ and $p=0.78$.

$$
\begin{aligned}
E(X) & =n p \\
& =(18)(0.78) \\
& =14.04
\end{aligned}
$$

We expect 14.04 people to be cured of the infection.
b) What is the probability that exactly $\mathbf{1 5}$ people are cured?

$$
\begin{aligned}
P(X=15) & =\binom{18}{15}(0.78)^{15}(0.22)^{3} \\
& \doteq 0.209 \\
& =20.9 \%
\end{aligned}
$$

The probability of exactly 15 people being cured is about 20.9%.
c) What is the probability that more than $\mathbf{1 5}$ are cured?

$$
P(X>15)=P(X=16)+P(X=17)+P(X=18)
$$

We can calculate these each separately and add up the result:

$$
\begin{aligned}
P(X=16) & =\binom{18}{16}(0.78)^{16}(0.22)^{2} \\
& \doteq 0.139 \\
& =13.9 \% \\
P(X=17) & =\binom{18}{17}(0.78)^{17}(0.22)^{1} \\
& \doteq 0.058 \\
& =5.8 \% \\
P(X=18) & =\binom{18}{18}(0.78)^{18}(0.22)^{0} \\
& \doteq 0.011 \\
& =1.1 \%
\end{aligned}
$$

So,

$$
\begin{aligned}
P(X>15) & \doteq 13.9 \%+5.8 \%+1.1 \% \\
& =20.8 \%
\end{aligned}
$$

There is about a 20.8% chance that more than 15 people will be cured.
2. Create a probability distribution table and a bar graph for a binomial distribution with $n=7$ and $p=0.45$.

k	$P(X=k)$
0	0.015
1	0.087
2	0.214
3	0.292
4	0.239
5	0.117
6	0.032
7	0.004

3. A manufacturing process has a defect rate of 2%. A quality-assurance technician selects 25 products at random to test.
a) What is the expected number of defective products?

I've decided to have "success" represent the defective products (that is, I'm counting defective products with the random variable X). You could switch it so that you're counting good products instead.

$$
\begin{aligned}
E(X) & =n p \\
& =(25)(0.02) \\
& =0.5
\end{aligned}
$$

We expect about 0.5 defective products.
b) What is the probability that none of the products selected will be defective?

$$
\begin{aligned}
P(X=0) & =\binom{25}{0}(0.02)^{0}(0.98)^{25} \\
& \doteq 0.603 \\
& =60.3 \%
\end{aligned}
$$

The probability of having zero defective products is about 60.3\%.
c) What is the probability that $\mathbf{1}$ or $\mathbf{2}$ of the products selected will be defective?

We can add $P(X=1)+P(X=2)$:

$$
\begin{aligned}
P(X=1) & =\binom{25}{1}(0.02)^{1}(0.98)^{24} \\
& \doteq 0.308 \\
& =30.8 \% \\
P(X=2) & =\binom{25}{2}(0.02)^{2}(0.98)^{23} \\
& \doteq 0.075 \\
& =7.5 \%
\end{aligned}
$$

$$
P(X=1 \text { or } X=2) \doteq 30.8 \%+7.5 \%
$$

$$
=38.3 \%
$$

The probability of having zero defective products is about 38.3\%.
4. The cafeteria has a limited-time promotion. When you purchase the Daily Special you roll 2d6 dice at the checkout. If you roll two sixes your Daily Special is free.
a) If you buy one Daily Special, what is the probability that it is free?

The probability of rolling two sixes on a single roll is $\frac{1}{36}$. This is the probability that your meal is free.
b) If you buy a Daily Special each day (Monday to Friday), how many would you expect to be free?

This is a binomial distribution with $p=\frac{1}{36}$. For part (b), $n=5$.

$$
\begin{aligned}
E(X) & =n p \\
& =(5)\left(\frac{1}{36}\right) \\
& =\frac{5}{36}
\end{aligned}
$$

You expect $\frac{5}{36} \doteq 0.14$ of your meals to be free.
c) A Daily Special is $\$ 5.00$. What do you expect to pay, on average, if you buy a week's worth of Daily Specials under this promotion?

You expect $\frac{5}{36}$ of a meal to be free, so you expect to pay for $4 \frac{31}{36}$ at $\$ 5$ each:

$$
\left(4 \frac{31}{36}\right)(5) \doteq 24.31
$$

You expect to pay about $\$ 24.31$ on average for a week's worth of specials.
d) What is the probability that you get more than one free Daily Special in a week?

$$
P(X>1)=P(X=2)+P(X=3)+P(X=4)+P(X=5)
$$

We save two probability calculations by using an indirect approach.

$$
\begin{aligned}
P(X & >1)=1-P(X=0)-P(X=1) \\
& =1-\binom{5}{0}\left(\frac{1}{36}\right)^{0}\left(\frac{35}{36}\right)^{5}-\binom{5}{1}\left(\frac{1}{36}\right)^{1}\left(\frac{35}{36}\right)^{4} \\
& =1-0.869-0.124 \\
& =0.007 \\
& =0.7 \%
\end{aligned}
$$

There is about a 0.7% chance of getting more than one free Daily Special in a week.
e) What is the probability that you get more than one free Daily Special in a month (out of 20 Daily Specials)?

Now the indirect approach is pretty essential, since $n=20$:

$$
\begin{aligned}
P(X>1) & =1-P(X=0)-P(X=1) \\
& =1-\binom{20}{0}\left(\frac{1}{36}\right)^{0}\left(\frac{35}{36}\right)^{20}-\binom{20}{1}\left(\frac{1}{36}\right)^{1}\left(\frac{35}{36}\right)^{19} \\
& =1-0.569-0.325 \\
& =0.106 \\
& =10.6 \%
\end{aligned}
$$

There is about a 10.6% chance of getting more than one Daily Special for free in a month.
5. In a half-time contest, one fan gets to shoot free-throws until they miss one, then they win a prize if they hit at least 5 shots. They have a $\mathbf{7 5 \%}$ chance of hitting each free throw. Explain why this is NOT a binomial distribution.

This is not a binomial distribution because there isn't a fixed number of trials (n).

